Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Fractal and Fractional ; 7(5), 2023.
Article in English | Scopus | ID: covidwho-20234870

ABSTRACT

In this paper, we introduce a SIVR model using the Laplace Adomian decomposition. This model focuses on a new trend in mathematical epidemiology dedicated to studying the characteristics of vaccination of infected communities. We analyze the epidemiological parameters using equilibrium stability and numerical analysis techniques. New mathematical strategies are also applied to establish our epidemic model, which is a pandemic model as well. In addition, we mathematically establish the chance for the next wave of any pandemic disease and show that a consistent vaccination strategy could control it. Our proposal is the first model introducing a vaccination strategy to actively infected cases. We are sure this work will serve as the basis for future research on COVID-19 and pandemic diseases since our study also considers the vaccinated population. © 2023 by the authors.

2.
Aims Mathematics ; 8(3):5918-5933, 2023.
Article in English | Web of Science | ID: covidwho-2201205

ABSTRACT

In this manuscript, we are proposing a new kind of modified Susceptible Exposed Infected Quarantined Recovered model (SEIQR) with some assumed data. The novelty imposed here in the study is that we are studying simultaneously SIR, SEIR, SIQR, and SEQR pandemic models with the same data unchanged as the SEIQR model. We are taking this model a step ahead by using a non-helpful transition because it was mostly skipped in the literature. All sorts of features that are essential to study the models, such as basic reproduction number, stability analysis, and numerical simulations have been examined for this modified model with other models.

3.
Symmetry-Basel ; 14(9), 2022.
Article in English | Web of Science | ID: covidwho-2071780

ABSTRACT

The model of any epidemic illness is evolved from the current susceptibility. We aim to construct a model, based on the literature, different to the conventional examinations in epidemiology, i.e., what will occur depends on the susceptible cases, which is not always the case;one must consider a model with aspects such as infections, recoveries, deaths, and vaccinated populations. Much of this information may not be available. So without artificially assuming the unknown aspects, we frame a new model known as IVRD. Apart from qualitative evaluation, numerical evaluation has been completed to aid the results. A novel approach of calculating the fundamental reproduction/transmission range is presented, with a view to estimating the largest number of aspects possible, with minimal restrictions on the spread of any disease. An additional novel aspect of this model is that we include vaccines with the actively infected cases, which is not common. A few infections such as rabies, ebola, etc., can apply this model. In general, the concept of symmetry or asymmetry will exist in every epidemic model. This model and method can be applied in scientific research in the fields of epidemic modeling, the medical sciences, virology, and other areas, particularly concerning rabies, ebola, and similar diseases, to show how immunity develops after being infected by these viruses.

SELECTION OF CITATIONS
SEARCH DETAIL